Bilinear Multipliers of Small Lebesgue spaces

نویسندگان

چکیده

Let $G$ be a locally compact abelian metric group with Haar measure $\lambda $ and $\hat{G}$ its dual $\mu ,$ ( G) is finite. Assume that$~1<p_{i}<\infty $, $p_{i}^{\prime }=\frac{ p_{i}}{p_{i}-1}$, $( i=1,2,3) $\theta \geq 0$. L^{(p_{i}^{\prime },\theta }( small Lebesgue spaces. A bounded measurable function $m( \xi ,\eta ) defined on $\hat{G}\times \hat{G}$ said to bilinear multiplier of type $[ (p_{1}^{\prime };(p_{2}^{\prime };(p_{3}^{\prime }] _{\theta }$ if the operator $B_{m}$ associated symbol $m$, \begin{equation} B_{m}(f,g) x) =\sum_{s\in \hat{G} }\sum_{t\in \hat{G}}\hat{f}(s) \hat{g}(t) m(s,t) \langle s+t,x\rangle \end{equation} defines from $L^{(p_{1}^{\prime \times L^{(p_{2}^{\prime into L^{(p_{3}^{\prime }(G) $. We denote by $BM_{\theta } [ space all multipliers }$. In this paper, we discuss some basic properties }[ give examples multipliers.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lebesgue Spaces for Bilinear Vector Integration Theory

In this note we shall announce results concerning the structure of £^0^)> the space of 2s-valued functions integrable with respect to a measure m:H->L(E, F), where L(E,F) is the class of bounded operators from the Banach space E into the Banach space F. The bilinear integration theory introduced here is more restrictive than the one developed by Bartle [1], but it is general enough to allow a n...

متن کامل

Notes on the Spaces of Bilinear Multipliers

A locally integrable function m(ξ, η) defined on R × R is said to be a bilinear multiplier on R of type (p1, p2, p3) if Bm(f, g)(x) = Z

متن کامل

Bilinear multipliers and transference

(defined for Schwarzt test functions f and g in ) extends to a bounded bilinear operator from Lp1 (R)×Lp2 (R) into Lp3 (R). The theory of these multipliers has been tremendously developed after the results proved by Lacey and Thiele (see [16, 18, 17]) which establish that m(ξ,ν) = sign(ξ +αν) is a (p1, p2)-multiplier for each triple (p1, p2, p3) such that 1 < p1, p2 ≤∞, p3 > 2/3, and each α∈R \...

متن کامل

On the boundedness of bilinear operators on products of Besov and Lebesgue spaces

We prove mapping properties of the form T : Ḃ11 p1 × L p2 → Ḃ22 p3 and T : Ḃ11 p1 × Ḃ α2,q2 p2 → L p3 , for certain related indices p1, p2, p3, q1, q2, α1, α2 ∈ R, where T is a bilinear Hörmander-Mihlin multiplier or a molecular paraproduct. Applications to bilinear Littlewood-Paley theory are discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Turkish Journal of Mathematics

سال: 2021

ISSN: ['1303-6149', '1300-0098']

DOI: https://doi.org/10.3906/mat-2101-94